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OUTLINE

• Brief introduction to principles of Cryobiology

• Model development at three length scales

• Optimal control 

• Current and future directions
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WHY FREEZE BIOSPECIMENS?

• Colder temperatures mean longer storage: at least 100 years in LN 

• Banking, distribution and testing of cells and tissues, maybe organs in the future

• Worldwide initiatives to preserve genetic samples

• Millennium Seed Bank, Svalbard Seed Bank, UK Biobank (0.5M samples)

• JAX Sperm bank ( >10000 strains)

• NCRR, MMRRC, MRRRC 

• NCI-Office of Biorepositories and Biospecimine Research 

• Kill unwanted cells and tissues in living systems
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• To reduce the effects of high salt concentrations 
and to aid in “glass formation” we add cryoprotective 
agents (CPAs)

Salt 
Alone

Salt CPA

1% 1% 10%
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THE TWO FACTOR 
HYPOTHESIS
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CRITICAL CRYOBIOLOGICAL 
QUANTITIES

Above 0°C these quantities govern osmotically 
induced damage

Below 0°C these quantities govern the 
likelihood of intracellular ice

Concentration Heat
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TRANSPORT PROBLEMS

Single Cell
Suspensions

Multi Cell
Tissues

Larger Tissues
and Organs

ODE 
System

Hybrid ODE/PDE 
System

PDE 
System

Model Selection

Nonlinear heat &
stefan problem 

Mass

Stochastic 
ODE

Large Monte 
Carlo System

Heat/
Solidi-
fication
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TRANSPORT PROBLEMS
Model Selection

All models in cryobiology are coupled systems!
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THE SINGLE CELL PROBLEM

Tuesday, October 19, 2010



MASS TRANSFER
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ṅ1 = P1(µext
1 − µint

1 )

ṅ2 = P2(µext
2 − µint

2 )
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MASS TRANSFER
THE CHOICE OF µ

Φ(T, P,N) = N1µ0 +
n∑

i=2

NikT ln
Ni

eN1

+
n∑

i=2

Niψi +
1

2N1

n∑

i,j=2

βijNiNj

µ1 = µ0 − kT




∑

i=2

mi +
1

2

n∑

i,j=2

(Bi +Bj)mimj





µi = kT



lnmi + ψ∗
i +

∑

j=1

(Bi +Bj)mj



 .

N1 or NiDifferentiating with respect to 

βij/kT = (Bi +Bj)and setting

JDB. Stability analysis of several non-dilute multiple solute transport equations. J. Math. Chem., In press. 
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Specific Model: set            and      

Cellular Quantities

Extracellular Quantities

Moles of 
nonpermeating solute

Moles of permeating 
solute

Water Volume

Nonpermeating solute 
molality

Permeating solute 
molality

Relative permeability

Maximal i th solute 

molality

x1 =

x2,...,n =

xnp =

b2,...,n =

M2,...,n =

M̄i =

M1 =

I. Katkov. A two-parameter model of cell membrane permeability 

for multisolute systems. Cryobiology, 40(1):64–83, Feb 2000. 

ẋ1 =
xnp

x1
+

k∑

j=2

xj

x1
−

n∑

i=1

Mi,

ẋ2 = b2

(
M2 −

x2

x1

)
,

...

ẋn = bn

(
Mn − xn

x1

)
,

Bi = 0 Mi ≈ x2/x1.
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SINGLE CELLS
Specific Model

Cellular Quantities

Extracellular Quantities

Moles of 
nonpermeating solute

Moles of permeating 
solute

Water Volume

Nonpermeating solute 
molality

Permeating solute 
molality

Relative permeability

Maximal i th solute 

molality

x1 =

x2,...,n =

xnp =

b2,...,n =

M2,...,n =

M̄i =

M1 =

I. Katkov. A two-parameter model of cell membrane permeability 

for multisolute systems. Cryobiology, 40(1):64–83, Feb 2000. 

ẋ1 =
1

x1



xnp +
k∑

j=2

xj −
n∑

i=1

Mix1



 ,

ẋ2 =
b2
x1

(M2x1 − x2) ,

...

ẋn =
bn
x1

(Mnx1 − xn) ,
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We have a  system of the form
where                             is a positive scalar function.  In 
this case, we can define an invertible transformation

and a new system                            such that 

meaning that we may, without any penalty, linearize the 
system by removing the          term.   

ẋ(t) = λ(x(t))f(x(t)),
λ(x(t)) = 1/x1(t)

q(τ) =

∫ τ

0

1

λ(x(s))
ds =

∫ τ

0
x1(s) ds

w′(τ) = f(w(τ))

w(τ) = x(q(τ))

1/x1

JDB, C Chicone, J Critser. Exact solutions to a two parameter flux model  

and cryobiological implications. Cryobiology,  50, 308-316, 2005
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x′ = f(x,M) := A(M)x+ xnpe1,

A(M) =





−
∑n

i=1 Mi 1 1 . . . 1
b2M2(t) −b2 0 . . . 0
b3M3(t) 0 −b3 . . . 0

...
...

...
. . .

...
bnMn(t) 0 0 . . . −bn




.

x′
1(τ) = xnp +

n∑

j=2

xj −
n∑

i=1

Mi(τ)x1,

x′
2(τ) = b2 (M2(τ)x1 − x2) ,

...

x′
n(τ) = bn (Mn(τ)x1 − xn) .

where

or
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Define

D := diag(1, (b2M2)
−1/2, . . . , (bnMn)

−1/2)

Then:

DA(M)D−1 =





−
∑

i Mi
√
b2M2

√
b3M3 . . .

√
bnMn√

b2M2 −b2 0 . . . 0√
b3M3 0 −b3 . . . 0
...

...
...

. . .
...√

bnMn 0 . . . 0 −bn





is symmetric, negative definite, and our original 
n-dimensional nonlinear system is globally 
asymptotically stable.

JDB, C Chicone, J Critser. A general model for the dynamics of cell volume, global 

stability, and optimal control . J. Math Bio., In press
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MASS TRANSPORT IN SMALL 
TISSUES
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SOLIDIFICATION DURING 
COOLING, SMALL TISSUES: 

D Iremia,  J Karlsson. Biophys. J. 88 647-660, 2005. 

Monte Carlo Simulation of IIF

pj(δτ) ≈ pij + ppj
≈ (1 + kjα)δt

pj

kj

is the probability of ice 

pij

ppj

is the probability of ice 
forming spontaneously 

is the probability of ice 
propagating from neighbor 

is the number of icy 
neighbors 
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MASS TRANSFER IN LARGE 
TISSUES

The apparent (i.e., volumetrically averaged) diffusivity (!D) was
used as the phenomenological parameter for the perfusion process
in the whole ovaries. Therefore, the governing equation to describe
the diffusion of CPA in the ovaries is

@C
@t

¼ !DO " ðOCÞ; ð1Þ

or, in the spherical coordinates:

@C
@t

¼ !D
@2C
@r2

þ 2
r
@C
@r

" #
: ð2Þ

Assuming the concentration of the EG solution in the perfusion
tube is constant, the boundary condition is chosen as a constant EG
concentration on the surface of ovaries:

Cðr ¼ R; tÞ ¼ Cext; ð3Þ

where R is the radius of the spherical ovaries, and was calculated by
the square root of the maximum cross-sectional area of the ovaries
divided by p, and Cext is the CPA concentration of the perfusion
solution. Then the theoretical solution to this diffusion process is
expressed as

Cðr; tÞ ¼ Cext &
2
rR

X1

n¼1

exp & np
R

! "2
!D

# $ Z R

0
q Cext & C0ðrÞ½ (

) sin
np
R
q

! "
" sin np

R
r

! "
dq; ð4Þ

where C0(r) is the initial CPA distribution inside the ovaries. The
spatially averaged concentration of the centric cross-section of the
ovaries can be obtained through

!CðtÞ ¼ 1
pR2

Z R

0
Cðr; tÞ " 2prdr; ð5Þ

and in the case where C0(r) = 0, we can integrate explicitly and sim-
plify to get

!CðtÞ ¼ Cext &
8Cext

p2

X1

n¼1

1
ð2n& 1Þ2

exp &
!Dð2n& 1Þ2p2t

R2

 !
: ð6Þ

With the value of !C obtained from the MRI experiments as a
function of time, the value of !D can be calculated through curve-fit-
ting Eq. (6) with a genetic algorithm [18]. Using this value of !D and
Eq. (4), we can predict the CPA distribution inside mouse ovaries
with different perfusion procedures.

An ‘‘inverse” perfusion procedure

To achieve a relatively high concentration of CPA near the cen-
ter of ovaries and a relatively low concentration near their surface,
an ‘‘inverse” perfusion procedure was proposed. The ovary is first
exposed to perfusion solutions with increasing CPA concentrations
in a commonly used stepwise fashion, e.g., 1 M EG for 40 min, 4 M
for 40 min and 7 M for 40 min. Then the ovary is perfused with
decreasing CPA concentrations for relatively short times, e.g., 5 M
for 5 min, 3 M for 5 min and 1.5 M for 5 min. The whole procedure
will then result in a lower concentration on the surface and a high-
er concentration in the center. The reason for gradually lowering
the EG concentration is to attenuate the osmotic damage to the
cells near the ovary surface when they are exposed to these rela-
tively low CPA concentrations. The change of CPA (EG) concentra-
tion in the perfusion solutions is demonstrated in Fig. 3. An
analytic solution of the diffusion equation with time dependent
boundary conditions exists, but in our case it is sufficient to use
Eq. (4) at each constant concentration perfusion step, e.g., the step
when EG concentration for perfusion remains as 4 or 7 M for
40 min, with the initial concentration distribution C0ðrÞ of the
new perfusion step set to the ending concentration distribution
of the last perfusion step. Therefore, the theoretical solution for
the EG concentration distribution during the whole perfusion pro-
cedure can be still obtained through this stepwise strategy.

Results

To calibrate the relationship between the image intensity and
EG concentration in ovaries, ovaries containing 0%, 10%, 20%, 30%,
40% (w/w) EG were scanned in five plastic straws using the same
MRI procedure. The average image intensity of the centric cross-
section of each ovary was calculated. Fig. 4 demonstrates that
the image intensity is a linear function (R2 = 0.99) of the EG con-
centration in these ovaries. Therefore, the value of !C can be calcu-
lated from the image intensity by fitting to this linear function.
During the EG perfusion procedure in the tube as shown in
Fig. 1, the image intensity of the centric cross-section of the ovaries
continuously increased until it reached a plateau. Two sample
images are as shown in Fig. 5. The average image intensity across
the centric cross-section of each ovary was calculated and the val-
ues of !C were obtained through the linear relationship demon-
strated in Fig. 4. Fig. 6 shows the value of !C inside an ovary with
a radius of 1.1 mm as a function of time, and the fitted curve using

Fig. 2. The proton MR spectrum at 7 T from the sample holder loaded with two
ovaries and 40% (w/w) EG solution. The excitation frequency was centered at the
resonance frequency for the –CH2 group in EG molecules.

Fig. 3. A schematic of the EG concentration change for the proposed perfusion
procedures.

300 X. Han et al. / Cryobiology 58 (2009) 298–302

the theoretical model given by Eq. (6). The same procedures were
repeated for eight ovaries and the value of !D of EG was calculated
as 6.1 ± 1.4 ! 10"7 cm2/s (mean ± SD).

With this value of !D and the stepwise strategy to obtain the the-
oretical solutions, when the inverse perfusion procedure is fol-
lowed, the final distribution of EG concentration in a spherical
mouse ovary with a radius of 1 mm is shown in Fig. 7. During

the whole perfusion process, the EG concentration as a function
of time at different locations in the ovary is shown in Fig. 8.

Discussion

During the CPA perfusion processes in tissues or organs, water
diffusion accompanies with CPA diffusion, and calculating the MR
image intensity from the excitation of the protons in both water
and CPA molecules will result in complicated physical analyses.
On the other hand, to design a perfusion procedure, the primary
concern is the CPA concentration distribution. Considering these
two facts, water saturation techniques were applied in this study
to eliminate the water signal and reveal the movement of EG mol-
ecules into the different locations of ovaries.

Different methods have been developed to measure CPA diffu-
sivity in tissues [1,2,6,10,24]. In organs, even as simple as mouse
ovaries, there exist different types of tissues. As a result, the CPA
perfusion rate in ovaries is non-uniform as shown in Fig. 5 and pre-
vious methods cannot be applied in this situation. Meanwhile, for
the application of any perfusion technique, it is important to know
the overall perfusion time to design the perfusion procedures.
Therefore, an average value of CPA diffusivity in organs is needed

Fig. 4. The linear relationship between the EG concentration in ovaries vs. the
average image intensity.

Fig. 5. Two sample MR images, with water signal saturated, showing the increasing
EG concentration in ovaries during perfusion.

Fig. 6. The experimental data with their fitted curve for the average EG concen-
tration change on the centric cross-section of an ovary with 1.1 mm as its identical
radius.

Fig. 7. The theoretical results of the ‘‘inverse” EG distribution in an ovary of 1 mm
in radius after the proposed perfusion procedure is used.

Fig. 8. The change of EG concentration in the ovary using the proposed perfusion
procedure.
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∂c

∂t
= ∇ · (D∇c)

X Han, L Ma, A Brown, JDB, J Critser. Cryobiology, 58 (3), 2009
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MASS TRANSFER IN LARGE 
TISSUES

X Han, L Ma, A Brown, JDB, J Critser. In review: IJHMT

∂c

∂t
= ∇ · (D(T )∇c) D(T ) = exp(−Ea/RT )
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WHAT CAN WE CONCLUDE 
FROM THE ABOVE MODELS?
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HEAT AND MASS 
TRANSFER LIMIT THE SIZE 

OF FREEZABLE TISSUE!
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DOES MODELING IN 
CRYOBIOLOGY WORK?

• Previous best protocol: 31% recovery

• “Optimally” defined new best protocol: 64% recovery

An improved cryopreservation method for a mouse
embryonic stem cell line q

Corinna M. Kashuba Benson, James D. Benson, John K. Critser *

Comparative Medicine Center, Research Animal Diagnostic Laboratory, College of Veterinary Medicine,
University of Missouri, 1600 East Rollins Street,Columbia, MO 65211, USA

Received 15 May 2007; accepted 3 December 2007
Available online 14 January 2008

Abstract

Embryonic stem (ES) cell lines including the C57BL/6 genetic background are central to projects such as the Knock-Out Mouse Pro-
ject, North American Conditional Mouse Mutagenesis Program, and European Conditional Mouse Mutagenesis Program, which seek to
create thousands of mutant mouse strains using ES cells for the production of human disease models in biomedical research. Crucial to
the success of these programs is the ability to efficiently cryopreserve these mutant cell lines for storage and transport. Although the abil-
ity to successfully cryopreserve mouse ES cells is often assumed to be adequate, the percent post-thaw recovery of viable cells varies
greatly among genetic backgrounds and individual cell lines within a genetic background. Therefore, there is a need to improve the effi-
ciency and reduce the variability of current mouse ES cell cryopreservation methods. To address this need, we employed the principles of
fundamental cryobiology to improve the cryopreservation protocol of a C57BL/6 mouse ES cell line by characterizing the membrane
permeability characteristics and osmotic tolerance limits. These values were used to predict optimal cooling rates, warming rates, and
type of cryoprotectant, which were then verified experimentally. The resulting protocol, generated through this hypothesis-driven
approach, resulted in a 2-fold increase in percent post-thaw recovery of membrane-intact ES cells as compared to the standard freezing
protocol, as measured by propidium iodide exclusion. Additionally, our fundamental cryobiological approach to improving cryopreser-
vation protocols provides a model system by which additional cryopreservation protocols may be improved in future research for both
mouse and human ES cell lines.
! 2008 Elsevier Inc. All rights reserved.

Keywords: Cryopreservation; Mouse; Embryonic stem cell; Slow cooling; Propylene glycol; Fundamental; Cryobiology; Banking; Stem cell

Introduction

The use of mouse embryonic stem (ES) cells in trans-
genic mouse production has contributed to a virtual explo-
sion in the number of existing transgenic mouse models
that are vital for human biomedical research [6,7]. Coordi-
nated projects to systematically knock out all mouse genes,

such as the Knockout Mouse Project (KOMP) [2], Can-
ada’s North American Conditional Mouse Mutagenesis
Program (NorCOMM, http://norcomm.phenogenomics.ca/
index.htm), the European Conditional Mouse Mutagenesis
Program (EUCOMM, http://www.eucomm.org) [3], and
Bay Genomics’ use of N-ethyl-N-nitrosurea (ENU)
(http://baygenomics.ucsf.edu/) [45], will create thousands
of mutant ES cell lines as a step towards producing mutant
mice that serve as important models of human biology and
disease [58]. The C57BL/6 mouse lineage is central to these
projects, due to its ease of genetic manipulation, wide
accessibility to researchers, and the existence of ES cell
lines of this genotype. Storage and maintenance of valuable
genotypes as live animal lines would be wholly impractical
[12]. On the other hand, banking lines as ES cells is cost-

0011-2240/$ - see front matter ! 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.cryobiol.2007.12.002

q This work was supported in part by the National Institutes of Health,
National Center for Research Resources Mutant Mouse Regional
Resource Centers Grant U42 RR1482, the Cryobiology Institute, Chem-
icon International, and NIH Postdoctoral Training in Comparative
Medicine Grant T32-RR07004.
* Corresponding author. Fax: +1 573 884 7521.
E-mail address: critserj@missouri.edu (J.K. Critser).

www.elsevier.com/locate/ycryo

Available online at www.sciencedirect.com

Cryobiology 56 (2008) 120–130
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OPTIMAL CONTROL IN 
CRYOBIOLOGY: 

•control quantity to minimize cost  J (e.g. 
time, energy, stress, PIIF or combinations.)

•subject to exact and inequality 
constraints:

•exact constraints: governing physical 
system, (e.g. 2P model, heat 
equation, diffusion, etc).

•inequality constraints:  state or 
control constraints, (e.g.    cell 
volume > 0).
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FIRST CONTROL PROBLEM

subject to

and

ẇ1 =
xnp

w1
+

w2

w1
−M1 −M2,

ẇ2 = b2

(
M2 −

w2

w1

)
,

w1 + γw2 − k∗ ≤ 0,

k∗ − w1 − γw2 ≤ 0.

min
M∈A

sf
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Time
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e

subject to

and

x1 + γx2 − k∗ ≤ 0,

k∗ − x1 − γx2 ≤ 0.

ẋ1 = −(M1 +M2)x1 + x2 + xnp

ẋ2 = bM2x1 − bx2

min
M∈A

sf = q(tf ) =

∫ tf

0
x1(τ) dτ

Existence Controllability! !

Bilinear state equation (in controls and state) give:
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Optimal controls maximize the Hamiltonian

H(x∗, p∗,M∗) = max
M∈CP

(A(M)x+ x1e1) · p− x1

= max
M∈CP

(
−M1x1p1 + x1

n∑

i=2

Mi(bipi − p1)

+ terms with no M
)

M1(t) =

{
0, p1 > 0
M̄1, p1 ≤ 0

Mi(t) =

{
0, bipi − p1 < 0
M̄i, bipi − p1 ≥ 0

.

OPTIMAL CONTROL
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WHY GEOMETRIC OPTIMAL 
CONTROL?
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SUFFICIENCY

Boltayanskii sufficiency theorem: a “regular, 
distinguished” trajectory defined by a state 

dependent control function v(x) is optimal. 

Region
Control 
Scheme

M1 M2

!I MI

C, D, !II MII 0

!III MIII 0 0

A, B, !IV MIV 0M̄1

M̄1 M̄2

M̄2
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RESULTS
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Cost 
function: 

J =

∫ T

0
Ccell(t)

2 dt

Addition Removal
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Solved with a direct method: parametrize system 
with piecewise linear controls, minimize 
constrained system with a truncated-Newton 
approach to the augmented Lagrangian
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OPTIMAL CONTROL 

Parabolic
System

System Coupling

Thermal 
convection/mushy 

layers/etc... 

Mass & 
Heat

Before cooling During cooling

All models in cryobiology are coupled systems!
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EXTENSION TO TISSUES, 
SYSTEMS

Cell 
or 

tissue
External media: diffusion or heat

f(t)

• Find          such that f(t) approximates the desired 
independent control uD(t), known a priori

• Can use “inverse problem” techniques to solve analytically

• This gives a tool to develop numerical schemes for 
completely novel optimal control problems

ce(t)

ce(t)

*A Carasso, SIAM J App. Anal. 1982
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Cell 
or 

tissue
External media: diffusion or heat

a 1

In Media

In Cell
ẋ = h(x, c(a, t))

cc = Mc(a, t)

ct = D

(
crr +

2

r
cr

)
(r, t) ∈ (a, 1)× [0,∞),

∂c

∂r
= k(cc − c), (r, t) ∈ {a}× [0,∞),

c = ce, (r, t) ∈ {1}× [0,∞),

c = c0, (r, t) ∈ [0, 1]× {a},

M = M1M2, M1 : (x, y) → x/y,

d(M2c(a, t))/dt = h(M2c(a, t), c(a, t))
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After Laplace transform, we may solve for 

Cell External media: diffusion or heat

a 1

h̄1(s), h̄2(s)

f̄(s) = h̄1(s)c̄
e(s) + h̄2(s)c̄

c(s)

where                     are modified spherical Bessel 
functions*. Thus, 

*DLMF:  http://dlmf.nist.gov/10.47.E2

f(t) =

∫ t

0
ce(τ)h1(t− τ) + cc(τ)h2(t− τ) dτ,

:= K1c
e +K2c

c.

Define K = K1[I −K2M2]
−1.
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Cell External media: diffusion or heat

a 1

Lemma*:   K1 and K2 are compact linear operators with 
zero spectral radius and unbounded inverse.

Lemma:         , M2 exist and are bounded.M

Formally:
ce = K−1

1 K2c
c +K−1

1 f

= K−1
1 (K2M+ I)f

which exists for f with sufficient decay.

*A Carasso, SIAM J App. Anal. 1982
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Problem

Define the cost

Find                 subject to above PDE-ODE system

and with state constraints 

min
ce∈A

J(ce)

Γ · x ≤ 0, Γ ∈ R2.

Proposition: Let !2 = 0.  Then there exists an !1 such 
that

J(ce) := T + ε1|(M2Kce)(T )− xd|2 + ε2‖ce‖2.

Define J1(v) = {T : |(M2v)(T )− xd| = 0}.

cej(t) = K−1
1 (K2M + I)f

:= K−1f

= argmin J(ce)
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Theorem:  The PDE-ODE system has no exact 
optimal controls. 

From above, we recall that f has step changes, and 
thus the frequency spectrum will not exponentially 
decay.

We must use approximate controls. 
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Define

J2(v) := ‖c(a, t)−Kv‖2 +
( ε

M

)2
‖v‖2.

Theorem: The unique minimizer of J2  is

Pf: Solve the overdetermined system 

in the frequency domain and take inverse FT.

Kv = cρ, ωv :=
ε

M
v = 0,

v(t) =
1√
2π

∫ ∞

−∞
eiξt

ĥ−1
1 (ξ)

(
ĥ2(ξ)M̂2v(ξ) + v̂(ξ)

)

1 + ω2ĥ−1
1 (ξ)

(
ĥ2(ξ) ˆM2v(ξ)

) dξ
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Theorem: Fix                .   Then there exist !1 and !2 
and

tf = J1(f)

Define

J(ce, t) := t+ ε1|(M2Kce)(t)− xd|2 + ε2‖ce‖2.

ω(ε1, ε2,M2, t
f )

K−1
ω f = argmin J(ce, tf ).
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Pf:

Since T is fixed, and M2 and K are bounded,  
there exists !3>0 (depending on T, M2), such that 

|(M2Kce)(t)− xd|2 = |(M2Kce)(t)− (M2KK−1f)(t)|2,
= |(M2Kce)(t)− (M2f)(t)|2,

Thus,  

and  

J(ce, tf )− tf ≥ ε1ε3
(
‖Kce − f‖2 + ω2‖ce‖2

)
> 0.

argmin J(ce, tf ) = argmin ‖Kce − f‖2 + ω2‖ce‖2

= K−1
ω2

f.

| M2Kce t − M2f t |2 ≥ ε3‖Kce − f‖2L2 ,
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Now note that 

‖M2‖2‖Kce − f‖2L2 ≥ |(M2Kce)(t)− (M2f)(t)|2,
and thus

and with                            given "(#) > 0 there 
exists an # > 0 such that  

‖M2‖2‖(KK−1
ω − I)‖2‖f‖2L2 ≥ ‖M2‖2‖(KK−1

ω − I)f‖2L2

≥ ‖M2‖2‖KK−1
ω f − f‖2L2

≥ |(M2KK−1
ω )(t)− (M2f)(t)|2,

δ ≥ ‖KK−1
ω − I‖

≥ k−2|(M2KK−1
ω )(t)− (M2f)(t)|2.

‖M2‖‖f‖ < k < ∞,
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NUMERICS

• PHAML: hp-adaptive 
multilevel elliptic solver

• Implicit-Filtering minimization 
algorithm: adaptive secant 
approximation to gradient

W Mitchell,  J. Par. Dist. Comp., 2007: P Gilmore, T Kelley, SIAM J Opt. 1995
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ODE 
System

Hybrid ODE/PDE 
System

PDE 
System

Model scaling shows where future work lies:

Stochastic 
ODE

Large Monte 
Carlo System

nonlinear heat 
equation 

Heat

Mass !

ODE 
System

Hybrid ODE/PDE 
System

PDE 
System

Stochastic 
ODE

Large Monte 
Carlo System

nonlinear heat 
equation 

Heat

Mass !

M
O

D
EL

S
C

O
N

T
R

O
LS

! !

! !
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CURRENT AND FUTURE 
PROBLEMS

• Develop cost functions for entire cryo-protocol

• Extend ‘inverse’ approach to 2D and 3D systems

• Model multiphase ternary solidification and interaction with 
biomaterials

• Iterative optimization of freezing protocols

• Optimal design of counter-current dialysis devices
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QUESTIONS?
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